Introduction

In this article I defend the Doomsday Argument, the Halfer Position in Sleeping Beauty, the Fine-Tuning Argument, and the applicability of Bayesian confirmation theory to the Everett interpretation of quantum mechanics. I will argue that all four problems have the same structure, and I give a unified treatment that uses simple models of the cases and no controversial assumptions about confirmation or self-locating evidence. I will argue that the troublesome feature of all these cases is not self-location but selection effects.

In part 1 I explain selection effects, develop a framework for analyzing them and connect them to self-location. In part 2 I explain the four problems about self-locating belief and analyze them using our framework. In part 3 I criticize other approaches to self-locating beliefs by drawing on the analogy between the four problems.

Preliminaries

Confirmation theory is concerned with the relationship between evidence and hypothesis: what is it for evidence to confirm a hypothesis? A central feature of Bayesian confirmation theory is that evidence confirms a hypothesis if and only if the evidence is more likely given that

I have had helpful exchanges with dozens of people on the material in this article over the years. For discussion of recent predecessors of this article I am grateful to Huw Price, Mike Titelbaum, audiences at the universities of British Columbia, CCNY, Delaware, Manchester, St. Andrews, Sydney, and York, and two referees for this journal.
the hypothesis is true than given that the hypothesis is false. Formally, where \(P \) represents an agent’s degrees of belief, evidence \(E \) confirms hypothesis \(H \) if and only if \(P(E \mid H) > P(E \mid \neg H) \) (Salmon, 1975).

Traditionally, confirmation theorists worked with eternal beliefs that always have the same truth value. But consider self-locating beliefs that locate the agent at a certain time or location (or possibly with respect to other variables, as we’ll see). What happens when the evidence is a self-locating belief? Far from being an abstract philosophical issue, this sort of learning occurs all the time. When you don’t know the time and look at your watch, you acquire a self-locating belief. Similarly, when you are lost and look at a map, you acquire a self-locating belief. The issue in this article is: when you acquire a self-locating belief, what effect does that have on your non-self-locating beliefs? I will argue that the Bayesian theory of confirmation can be applied even when we learn self-locating beliefs. Cases where self-locating beliefs are acquired do tend to have an interesting feature however. This feature is a selection effect. I will suggest that the failure to take into account selection effects is responsible for much of the controversy regarding the four problem cases.

Part 1: Selection Effects and Self-Location

1.1. **Selection Effects**

Let’s start with selection effects. Whenever a sample is drawn from a population, some particular method must be used. Call this method the selection procedure. The effect the selection procedure has on any inferences that can be drawn is the selection effect. Eddington’s classic example involves fishing with a net (Eddington, 1939). If we catch a sample of fish from a lake, and all the fish in the sample are bigger than six inches, this appears to confirm the hypothesis that all the fish in the lake are bigger than six inches. But if we then find out that the net used cannot catch anything smaller than six inches due to the size of its holes, the hypothesis is no longer confirmed. So the inference depends on the method of obtaining the sample, that is, on the selection procedure. There are countless types of procedure, but we will need only two:

1. Selection effects, sometimes called “observation selection effects,” play an important role in Horwich’s analysis of the ravens paradox (Horwich, 1982) and most famously in the Monty Hall problem (Vos Savant, 1997). See Hutchison, 1999 and Bostrom, 2002 for systematic discussions, and also Kotzen (forthcoming a).
A random procedure is one where each member of the population has an equal chance of being selected for the sample. This is familiar from statistics (Stuart, 1962). For simplicity, we will assume that random procedures always select at least one object.

Of the many nonrandom procedures, we will need only the following:

A biased procedure is one such that given that there is an object with property p in the population, an object with p is selected for the sample. We’ll say the procedure is biased toward p in such a case. Formally:

A procedure is biased toward p iff \(\Pr(\text{an object with } p \text{ is selected } \mid p \text{ is instantiated in the population}) = 1 \). \(^2\) (Careful: This is slightly different from the ordinary language use of ‘bias’; my use is closer to the ordinary language ‘maximal bias’.)

To get a grip on these selection procedures, let’s consider two simple urn examples that have the same structure as the four cases we will look at.

1.2. Uncertain Small Ball

Suppose you are faced with an urn containing either one ball or two, depending on the result of a fair coin toss—two if Tails, one if Heads. If Tails lands, one big ball and one small ball will be placed in the urn. If Heads lands, another fair coin will be flipped to determine if the single ball will be big or small. (For future reference, Heads and Tails correspond to uncentered possible worlds; balls 1 and 2 correspond to locations within those worlds.)

<table>
<thead>
<tr>
<th>Ball 1</th>
<th>Ball 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td>Large or Small –</td>
</tr>
<tr>
<td>Tails</td>
<td>Large Small</td>
</tr>
</tbody>
</table>

H = Heads
T = Tails

A sample of one is taken from the urn. It turns out to be small.

\(^2\) This procedure is neutral on what happens if there is no object with p in the population, or exactly which objects are selected if there is more than one object with p in the population. Eddington’s example fits a slightly different kind of bias: only objects with p are selected for the sample. I used this definition in Bradley, 2009.
How should we describe the evidence? One thing that has been learned is:

\[E = \text{There is a small ball}. \]

But this may not be the total evidence. We may also know the procedure by which we came to learn that there is a small ball. Let’s run through the effects of knowing that there is a random or a biased procedure.

Random Procedure

First suppose that the procedure is random. That is, every ball in the urn has an equal chance of being selected. We could make this vivid by imagining that a large hole is opened and the urn shaken until a ball comes out.

\[E_R = \text{I learn that there is a small ball by a random procedure.} \]

If Tails, there is one small ball and one large ball in the urn, so \(P(E_R \mid T) = 1/2 \). If Heads, there is a 50 percent chance of the urn’s containing a large ball and a 50 percent chance of the urn’s containing a small ball, so \(P(E_R \mid H) = 1/2 \). Assuming only that \(E \) confirms \(H \) iff \(P(E \mid H) > P(E \mid \neg H) \), as we will throughout, neither Heads nor Tails is confirmed.

Discovering a property with a random procedure confirms neither hypothesis if the probability that a randomly selected object has that property is the same given either one ball or two. (We’ll see that something similar happens in the Everett interpretation of quantum mechanics.)

Biased Procedure

Now assume that the procedure is biased toward smallness. That is, given that a small ball is in the urn, a small ball is selected. We could make this vivid by imagining that a small hole is opened and the urn shaken until any ball that fits comes out. Big balls won’t fit, so a small ball will be observed whenever a small ball exists.

\[E_B = \text{I learn that there is a small ball by a procedure biased toward smallness.} \]

Recall that the probability that a small ball exists given Heads is \(1/2 \), and the probability that a small ball exists given Tails is 1. So the probability that a small ball is selected given Heads is \(1/2 \), and the probability that a small ball is selected given Tails is 1. That is, \(P(E_B \mid H) = 1/2 \) and \(P(E_B \mid T) = 1 \). \(P(E_B \mid H) > P(E_B \mid T) \), so \(E_B \) confirms Tails. Discovering, with a biased procedure, a property that is more likely to be instantiated given two balls than one confirms the two ball hypothesis. (We’ll see something similar happens in the Multiverse case.)
Notice that in Uncertain Small Ball, the property discovered (being a small ball) might not be instantiated—this would happen if Heads lands and a big ball is in the urn. The results are generalized and summarized in Table 1. p represents the property discovered, and the rows represent the procedure by which it was discovered.

1.3. Certain Small Ball

Let’s now suppose that the property discovered (being a small ball) is certain to be instantiated. We can do this by supposing that a small ball is always placed in the urn if Heads lands. Everything else is as before.

<table>
<thead>
<tr>
<th>Ball 1</th>
<th>Ball 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td>Small</td>
</tr>
<tr>
<td>Tails</td>
<td>Small</td>
</tr>
</tbody>
</table>

This changes the inferences we can draw when a small ball is selected by either procedure.

Random Procedure

Assume that a large hole is opened so that each ball has an equal chance of being selected. If Heads, the probability of a small ball’s being selected is 1, as there is only the one small ball in the urn. If Tails, the probability of a small ball’s being selected is $1/2$. $P(E_R | H) = 1 > P(E_R | T) = 1/2$, so Heads is confirmed. Discovering, by a random procedure, a property that is certain to be instantiated confirms that there is only one ball if the second ball has some chance of not having the property and being selected. This is because the presence of such a second ball would lower the probability that a small ball would be selected to less than 1. (We’ll see something similar happens in the Doomsday Argument.)

Biased Procedure

Assume that a small hole is opened and the urn shaken, so the procedure is biased toward smallness. There is certain to be a small ball in the urn.
(given Heads or Tails), and the small ball is certain to be selected, so
\[P(E_B | H) = P(E_B | T) = 1, \]
so neither Heads nor Tails is confirmed. Think of this as the biased procedure searching for a property that is
certain to be instantiated. Discovering, by a biased procedure, a property
that is certain to be instantiated confirms neither hypothesis. Notice
that even if we then add more objects to the Heads hypothesis, there
will still be no confirmation. (We’ll see something similar happens in
Sleeping Beauty.)

These results are added to Table 1 to get Table 2.

Table 2 is a map of this article. I will argue that each of the four
problems of self-locating belief fits into a different box. Let’s now intro-
duce self-locating beliefs and connect them to selection effects.

1.4. Self-locating Belief

Traditionally, confirmation theorists worked with eternal beliefs that
always have the same truth value. But self-locating beliefs such as it is Mon-
day, or I’m in Australia locate the agent at a certain time or location (or
possibly with respect to other variables, as we’ll see). If the evidence is a
self-locating belief, two issues are raised for confirmation theory.

The first is that self-locating beliefs change in ways that non-self-
locating beliefs don’t. This is because self-locating beliefs can change in
truth-value, so rational belief can change in virtue of tracking that truth-
value. For example, the belief that today is Monday disappears as mid-
night strikes and is replaced by the belief that today is Tuesday. It is rela-
tively uncontroversial that the Bayesian framework—conditionalization
in particular—must be modified to incorporate this kind of belief
change. 3 Various theories have been proposed (Meacham, 2010, Titel-
baum, 2008, Schwarz, forthcoming), but I won’t deal with this kind of
belief change here (I discuss this in Bradley, 2011b and forthcoming).

3. Conditionalization says that if an agent has prior probabilities \(P_0(H_t) \) at \(t_0 \) and
learns \(E \) and nothing else between \(t_0 \) and \(t_1 \), then his or her \(t_1 \) probabilities should be
\[P_0(H_t | E), \] where \(P(E) > 0 \). I will be concerned only with confirmation.

4. Though see Stalnaker, 2008 for dissent.
The second issue arises in cases where the agent is initially *uncertain* about some self-locating fact and then discovers it. This happens every time you look at a map to discover where you are, or look at a clock to learn the time. Note that this is a different kind of case than that of the previous paragraph, for in this case the change in belief is not due to a change in the truth value of the belief. Instead, something has been discovered that was previously uncertain. The authors mentioned two paragraphs above deal with these two issues together, but I think it best to separate them. I will try to demonstrate that this second way of acquiring a self-locating belief does not present a problem for the Bayesian view that E confirms H iff $P(E | H) > P(E | \neg H)$.

Instead, the complications in such cases are caused by the fact that E might be true without being learned. And this feature provides the connection to selection effects. Although you selected a small ball from a population, the small ball could have been in the population without being observed (a large ball could have been selected instead). Similarly, although you looked at your watch at 12:30, it could have been 12:30 without your observing it (you could have been asleep at 12:30 and have woken to observe 12:31).

By contrast, in many familiar examples—rolling a dice, drawing a card, reading a measuring device—it is natural to assume that if E is true, then E is learned. As a result, the assumption—that if E, then E is learned—is usually made without fanfare and enforced thereafter. For example, Hacking (1967, 316, 324) treats the inference from the truth of E to learning E as a “trifling idealization” and Howson and Urbach (2006, 54) make use of an “omniscient oracle.” But the assumption that E entails learning E is substantive and doesn’t always hold. Where it does hold, we’ll model the case with a biased procedure; where it doesn’t, we’ll use a random procedure.

There is a disanalogy between sampling and self-location cases that is worth pointing out. Talk of selection procedures is literal in sampling cases but metaphorical in self-location cases, where selection procedures are just a way of making vivid the possible gap between E and learning E. Whereas a literal procedure generates physical probabilities (objective chances), our metaphorical procedures generate subjective (or inductive) probabilities (Maher, 2006). So what matters for us is what the agent believes (or ought to believe) about the probability of learning the evidence given the hypotheses. I will mostly leave reference to the agent’s beliefs implicit and simply speak of the procedure we should use to model the case.
Part 2: Four Problems

All four problems of self-locating belief have the following structure:

<table>
<thead>
<tr>
<th>Self-locating possibility 1</th>
<th>Self-locating possibility 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

H2

Figure 1. Self-locating possibilities

There are two possible worlds, represented by hypotheses H1 and H2 (the rows), with two possible locations (the columns). Each of the locations has a particular property. The question is whether learning that you are at one of the locations, with some particular property, confirms either H1 or H2. We will see that the answer depends on two variables (see Table 3): the procedure by which the property was discovered (rows) and whether the property discovered was certain to be instantiated (columns). I will argue that the four problems about self-locating belief fit into the four boxes as follows.

<table>
<thead>
<tr>
<th>p is certain to be instantiated</th>
<th>p might not be instantiated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random procedure</td>
<td>Doomsday Argument</td>
</tr>
<tr>
<td>One outcome confirmed</td>
<td>No confirmation</td>
</tr>
<tr>
<td>Quantum mechanics</td>
<td>Two outcomes confirmed</td>
</tr>
<tr>
<td>Biased procedure</td>
<td>Sleeping Beauty</td>
</tr>
<tr>
<td>No confirmation</td>
<td>Fine-Tuning</td>
</tr>
</tbody>
</table>

Table 3.
2.1. Everettian Interpretation of Quantum Mechanics

Stochastic quantum mechanics (QMS) is an indeterministic theory. It says that when a measurement is made, there is a certain chance of each possible outcome occurring. Everettian quantum mechanics (QME) is a deterministic theory. It says that when a measurement is made, the universe divides, and there is a branch in which each outcome occurs. If we don’t know which of these is true, and we are about to measure the spin of a particle in a nonextreme superposition of Up and Down, we face the following possibilities:

<table>
<thead>
<tr>
<th>Random procedure</th>
<th>p is certain to be instantiated</th>
<th>p might not be instantiated</th>
</tr>
</thead>
<tbody>
<tr>
<td>One outcome confirmed</td>
<td>No confirmation Quantum mechanics</td>
<td></td>
</tr>
<tr>
<td>Doomsday Argument</td>
<td>Sleeping</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biased procedure</th>
<th>QMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No confirmation Sleeping</td>
<td></td>
</tr>
<tr>
<td>Two outcomes confirmed Fine-Tuning</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branch 1</th>
<th>Branch 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMS</td>
<td></td>
</tr>
<tr>
<td>Up or Down</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
</tr>
<tr>
<td>Down</td>
</tr>
</tbody>
</table>

Figure 2. Quantum mechanics

5. Reference to a “branch” might seem odd given QMS. But we can think of this as a possibility where there is just the one branch. Furthermore, a referee correctly points out that nothing makes it branch 1 rather than branch 2 given QMS. I use the label for convenience. All that matters is that there is only one branch given QMS.

6. QMS and QME are the hypotheses representing the two possible worlds—the one where QMS is true and the one where QME is true. Do not confuse this standard philosophical use of ‘world’ with the use of ‘world’ in ‘many-worlds interpretation’. I call the things posited by the many-worlds interpretation ‘branches’.

157
According to QMS, there is only one branch. One outcome will occur, which in this case is either Up or Down. The result of an observation will tell you which. According to QME, there are two branches. Making an observation tells you which branch you are on—the Up branch or the Down branch.

Suppose you observe “Up.” According to QME, the discovery is “I am in the Up branch,” where the ‘I’ refers to a postmeasurement observer. Does the evidence confirm either QME or QMS? As QME is intended to be an interpretation of the same theory as QMS, the desired answer is: Neither is confirmed (see Saunders, 1998, Vaidman 2002, Greaves, 2004, Papineau, 2004, and Wallace, 2006). I will shortly offer an analysis that delivers this result.

But a tempting answer we will reject is that the evidence confirms QME. The argument for this confirmation of QME uses the non-self-locating evidence:

\[E_{-2} = \text{There is a branch on which Up occurs.} \]

The argument then says that there is certain to be an Up branch given QME but not given QMS; \(P(E_{-2} | \text{QME}) = 1 > P(E_{-2} | \text{QMS}) \), so \(E_{-2} \) confirms QME. And notice that it doesn’t matter that Up was observed rather than Down. Both outcomes had a probability of 1 given QME and less than 1 given QMS, so both must confirm QME. We get the result that any possible evidence confirms QME. Call this result Naïve Confirmation.\(^8\)

Naïve confirmation is absurd. But it is not surprising; as QME says that every outcome occurs, any outcome that isn’t entailed by QMS will confirm QME. And it gets worse. As branching is happening all the time, it would follow that we have overwhelming evidence in favor of QME. For example, suppose I see that it is raining. Under any interpretation of quantum mechanics, there are some quantum outcomes (however improbable) on which it wouldn’t have rained. According to QME, it was certain that rain would be observed (in some branch), but according to QMS it is less than certain. So such everyday observations are constantly confirming QME. On this reasoning, QME gets enormous confirmation.

\(7\). Branches 1 and 2 are self-locating possibilities 1 and 2 described above. Particularly relevant is the debate, comparing the extent of the analogy between QME and Sleeping Beauty, in Peter Lewis, 2007, 2009 and Papineau and Durà-Vilà, 2009a, 2009b. My argument favors Lewis’s position. I engage with this literature in Bradley, 2011a.

\(8\). This name is adapted from Naïve Conditionalization in Greaves, 2004. I have simplified the problem so it can be applied to a single probability model at one time.
without the need for modern physics. The Ancients could have worked out that they have overwhelming evidence for QME merely by realizing it was a logical possibility and observing the weather. Price (2006), worried by Naïve Confirmation, suggests that Bayesian confirmation theory cannot be applied to QME.

I think instead that all we need to do is take note of the self-locating nature of the evidence and the selection effects that come with it. The result will be that the evidence favors neither QME or QMS.

We previously tried to express the evidence as:

\[E_{-2} = \text{There is a branch on which Up occurs.} \]

But this misses out the self-locating nature of the evidence. “Up” has been found on this branch:

\[E_{-1} = \text{Up occurs on this branch.} \]

Now we need to add the selection effect with which to model the discovery of the self-locating belief. Was there a bias toward observing Up? That is, given that Up is instantiated, is it certain that I will observe Up? No. Remember the observation is made by a postbranching observer, for whom it was a possibility that Up was instantiated but not observed; this happens if QME is true and the other branch is Up. So the case should not be modeled with a biased procedure. Let’s assume for now that the observer is as likely to be in the Up branch as the Down branch given QME (this assumption will be dropped shortly.) Then the case can be modeled with a random procedure. Knowledge of the selection effect could be expressed as part of the background knowledge, but for clarity we’ll put it into the new evidence (and will do so for the other cases):

\[E = \text{I learned that Up occurs in this branch by a random procedure.} \]

9. One might object that the only way to individuate “this branch” is as “the Up branch” and argue that this evidence has a probability of 1. But the probabilities are subjective, not objective. Even if this branch is necessarily the Up branch, this fact is not a priori, nor is it certain, so your prior credence in the evidence will be less than 1. ‘This branch’ is not functioning as a rigid designator in the relevant probability model, so I’ve tried to avoid using ‘this’. I think the fact that self-locating terms like ‘this’ and ‘I’ are usually rigid designators is a source of confusion. See n. 20 and Santorio, Forthcoming.

10. Huw Price has suggested in conversation that if the agent survives on only one branch, the procedure would be biased toward the survival branch, so survival would confirm QME. But perhaps the existence of the survival branch does not entail it will be observed by that postbranching agent. For all that postbranching agent knows a priori, his or hers could have been the nonsurvival branch. This issue is related to n. 8 and 20.
This finally expresses the total evidence. It puts us in the top row of the table.

Now let’s ask if it is certain that the Up result occurs at all. Is the property of being an Up branch certain to be instantiated? No. If QMS is true and Down occurs, then there is no Up branch. This puts us in the right column of the table.

<table>
<thead>
<tr>
<th>p is certain to be instantiated</th>
<th>p might not be instantiated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random procedure</td>
<td>One outcome confirmed</td>
</tr>
<tr>
<td>Doomsday Argument</td>
<td>No confirmation</td>
</tr>
<tr>
<td>Biased procedure</td>
<td>No confirmation</td>
</tr>
<tr>
<td>Sleeping Beauty</td>
<td>Two outcomes confirmed</td>
</tr>
</tbody>
</table>

The procedure is random and the property discovered might not have been instantiated. More specifically, the probability that a randomly selected branch is an Up branch is the same given either QME or QMS.

$$P(E \mid QME) = P(E \mid QMS)$$

So we get the desired result that there is no confirmation of either QME or QMS when “Up” is observed. (Similarly for observing “Down.”)

There is a complication that must be dealt with—branches may have unequal weights. Weights are introduced to QME to allow for the possibility that—in the terminology of QMS—not all the outcomes are equally likely. The outcomes that are more likely according to QMS have greater weight according to QME. So we must drop the assumption that the observer is as likely to be in the Up branch as the Down branch. If Up has a chance of 70 percent according to QMS, then the Up branch has a weight of 70 percent according to QME, which means a postbranching observer should assign a probability of 70 percent to being in the Up branch.

But this is no problem for our result that $$P(E \mid QME) = P(E \mid QMS)$$. If $$P(E \mid QMS) = 70$$ percent due to the objective chances, $$P(E \mid QME) = 70$$ percent due to the weights. As long as the weights in QME equal the probabilities in QMS, E won’t favor one over the other.\(^{11}\)

Of course the problem remains for Everettians of justifying this use of weights. Why should we believe that we are on the Up branch with 70 percent certainty just because the Up branch has a weight of 70

11. This removes the need for a Principle of Indifference defended in Bradley, 2011a.
percent? This is a central problem for Everettians that is beyond the scope of this article (see the references in note for discussion). My claim is that if this match of subjective probabilities to weights can be justified, standard confirmation theory can be applied.

We’ll now move on to an example where the procedure is biased and see that confirmation of the two outcomes hypothesis results.

2.2. Fine-Tuning

If the fundamental constants of the universe had been much different from their actual values, life could not have existed. For example, if gravity had been a bit stronger, the universe would have collapsed in on itself moments after the big bang. If it had been a bit weaker, the universe would have flown apart so fast that molecules could never have been formed. The same holds for nearly all the other fundamental constants (see McMullin, 1993). (The initial conditions are also vital. For ease of exposition, I will take “right constants” to include right initial conditions.) The existence of every living thing in the universe is balanced on a knife-edge. Nevertheless, life exists.

Proponents of the Fine-Tuning argument claim that the existence of life requires an explanation. One explanation is that there are many universes, and these universes have fundamental constants with different values. This is a hypothesis that has been independently suggested several times, from Misner, Thorne, and Wheeler’s (1973) oscillating universes to Susskind’s (2005) Landscape hypothesis. (Not all versions of these theories entail that the other universes have different constants, but I am interested in the versions in which they do. This restriction might reduce the prior probability of the hypothesis, but that doesn’t affect my argument, which is about whether the hypothesis is confirmed by the evidence.)

We can model a simple version of the Fine-Tuning Argument as having two hypotheses, with either one or two universes.

12. I have found that some philosophers are hostile to this claim for reasons I find puzzling; physicists seem to take the claim as data. See Colyvan, Garfield, and Priest 2005 for a technical argument that it is not improbable that the universe be fine tuned and the response in Monton, 2005.

Does our evidence confirm the Multiverse hypothesis? I will argue that it does.

To fit the Multiverse case into our framework, we must ask the same two questions. First, what is the procedure by which our evidence has been discovered? Well what exactly is the evidence? We might first try to express the evidence as:

$$E_2 = \text{There is a universe with the right constants for life}.$$

But this misses out the self-locating nature of the evidence. The right constants have been found in this universe:

$$E_1 = \text{This universe has the right constants for life}.$$

Now we need to add the selection effect that the self-location brings in. Was there a bias toward our discovering a universe with the right constants for life rather than the wrong constants? That is, given the existence of a universe with the right constants, is it certain that we will observe a universe with the right constants? For now, we’ll assume that it is (this assumption will be weakened shortly). So we can model this case as one in which there is a bias toward observing universes with the right constants.

$$E = \text{I have learned that this universe has the right constants for life with a procedure biased toward universes with the right constants.}$$

This bias puts us in the bottom row of the table.

Second, was the property of being a universe with the right constants for life certain to be instantiated? No. It was possible that no uni-
verse had the right constants for life. This puts us in the right column of the table, so the two outcomes hypothesis (MV) is confirmed: \(P(E | MV) > P(E | UV) \).

Recall from Uncertain Small Ball that discovering, with a biased procedure, a property that is more likely to be instantiated given two balls than one confirms the two ball hypothesis. Applied to the universe case, discovering, with a biased procedure, a property that is more likely to be instantiated given MV than UV confirms MV. And we’ll see that this sufficient condition for confirmation of MV holds on plausible assumptions. We’ll look at a formal model in a moment, but it’s worth going through an intuitive way to think about this argument.

Imagine first that God makes just one universe. Then the only chance of a universe with the right constants is if that one universe has the right constants. (Assume that each universe has a probability between 0 and 1, noninclusive, of having the right constants.) Now suppose God makes a second universe. There is now a second chance for the right constants to be instantiated. If the probability of this second universe’s existing and having the right constants is independent of the first’s having the right constants, then the overall probability of the right constants being instantiated must rise. As the biased procedure ensures that a universe with the right constants is observed whenever it is instantiated, this means that the overall probability of observing the right constants must rise. Thus, discovering the right constants confirms the Multiverse hypothesis.

We can now weaken the assumption that the procedure is biased. We can run through the argument of the previous paragraph but weaken

15. I am grateful to Mike Titelbaum for an exchange on what follows in this section.

17. Indeed we must—there might have been universes with the right constants but
the last step regarding the procedure. Grant that the existence of a
second universe increases the overall probability that the right constants
are instantiated. It’s plausible that an increase in the overall probability
that the right constants are instantiated also increases the overall prob-
ability that we will exist, and therefore observe the right constants. If so,
we are more likely to observe the right constants given MV than UV. I’ll
now give a more formal argument (the equation-averse can skip to the
next section).

\[
b = \text{The probability that any given universe has the right constants for life.}
\]

\[
L = \text{At least one universe has the right constants for life.}
\]

\[
UV = \text{There is exactly one universe.}
\]

\[
P(L \mid UV) = b
\]

\[
MV = \text{There are exactly two universes.}
\]

\[
C = \text{Universe 1}
\]

\[
D = \text{Universe 2}
\]

\[
CL = \text{Universe 1 has the right constants for life.}
\]

\[
DL = \text{Universe 2 has the right constants for life}
\]

Assume that each possible universe has the same chance of having the
right constants and that these probabilities are independent of each other:

\[
P(CL) = P(DL) = P(CL \mid DL) = P(DL \mid CL) = b
\]

So,

\[
P(L \mid MV) = 1 - (1 - b)^2
\]

\[
= b + (b - b^2)
\]

\[
= b + b(1 - b)
\]

Assuming only that \(b\) is between 0 and 1, it follows that \(b\) and \((1-b)\) will
both be positive, so \(b(1-b)\) will be positive, so \(b + b(1-b) > b\), so
\(P(L \mid MV) > P(L \mid UV)\). So \(L\) supports \(MV\).

none that contain us. For example, the exact planetary conditions required for life to
begin might not have occurred.

18. This is the step that fails if the procedure is random. With a random procedure,
what matters isn’t the overall probability that the right constants are instantiated but the
probability that a given universe has the right constants. See n. 18.
But L may be true, yet we don’t observe the right constants. That is, the procedure is not biased. To see how the argument will still go through, first assume that the procedure is biased, so that if some universe has the right constants, we observe the right constants.\(^{19}\) So \(P(L) = P(\text{We learn } L)\),\(^{20}\) and we can substitute \(P(\text{We learn } L)\) for \(P(L)\).

\[
P(\text{We learn } L | \text{UV}) = b
\]

\[
P(\text{We learn } L | \text{MV}) = 1 - (1 - b)^2
\]

\[
= b + (b - b^2)
\]

\[
= b + b(1 - b)
\]

As above, \(b + b(1 - b) = P(\text{We learn } L | \text{MV}) > P(\text{We learn } L | \text{UV}) = b\), so We Learn L supports MV.

Now let’s drop the assumption that the procedure is biased. We can do this by adding another parameter connecting a universe’s having the right constants for life and our observing it:

\[s = \text{The probability that we observe the right constants given that there is exactly one universe with the right constants.}\]

Assuming that we are as likely to exist in either possible universe, the effect this extra parameter has given UV is straightforward:

\[
P(\text{We learn } L | \text{UV}) = sb.
\]

How does this compare to MV?

Assume that if one universe has the right constants, then the existence of another with the wrong constants doesn’t change the probability that we observe the first:

\[
P(\text{We learn } L | \text{CL} \sim \text{DL}) = P(\text{We learn } L | \sim \text{CL,DL}) = s
\]

19. White, 2000, following Hacking, 1987, denies this on the grounds that we could not have existed in any universe other than the one we are actually in, say, C. This has the same effect as a random procedure would—there would be no confirmation. In Bradley, 2009 I argued that we could have existed in other universes, and even if we couldn’t have, the Multiverse argument would still go through; granting some independence assumptions, the more universes there are, the greater the chance that C exists, so the greater the chance that we will exist. This section makes explicit some assumptions implicit in that paper.

20. This also requires that if we observe the right constants, some universe has the right constants. This is true assuming either veridical observations or, more weakly, no “freak observers” in universes with the wrong constants (Bostrom, 2002, chap. 5).
If instead no universe has the right constants, the probability that we observe a universe with the right constants is 0:

$$P(\text{We learn } L \mid \text{MV. } \sim \text{ CL. } \sim \text{ DL}) = 0$$

What about if both exist and have the right constants? We cannot exist in both universes. To make the case as difficult as possible for the multiverse theorist, let’s say that the probability of our observing a universe with the right constants given two universes with the right constants is also s. So the probability of our observing a universe with the right constants is no greater given two universes with the right constants than given one universe with the right constants:

$$P(\text{We learn } L \mid \text{CL.DL}) = s$$

These four possibilities for MV have the following weights:

- $P(\text{CL.DL}) = b^2$
- $P(\text{CL. } \sim \text{ DL}) = b(1 - b)$
- $P(\sim \text{ CL.DL}) = (1 - b)b$
- $P(\sim \text{ CL. } \sim \text{ DL}) = (1 - b)^2$

So

$$P(\text{We learn } L \mid \text{MV}) = P(\text{We learn } L \mid \text{CL.DL}).P(\text{CL.DL}) +$$
$$P(\text{We learn } L \mid \text{CL. } \sim \text{ DL}).P(\text{CL. } \sim \text{ DL}) +$$
$$P(\text{We learn } L \mid \sim \text{ CL.DL}).P(\sim \text{ CL.DL}) +$$
$$P(\text{We learn } L \mid \sim \text{ CL. } \sim \text{ DL}).P(\sim \text{ CL. } \sim \text{ DL})$$
$$= sb^2 + sb(1 - b) + sb(1 - b) + 0$$
$$= sb + (sb - sb^2)$$
$$= sb + sb(1 - b)$$

Assuming only that sb and b are between 0 and 1, it follows that sb and $(1-b)$ will both be positive, so $sb(1-b)$ will be positive, so $sb + sb(1-b) > sb$, so $P(\text{We learn } L \mid \text{MV}) > P(\text{We learn } L \mid \text{UV})$. So “We Learn L” confirms MV. We can conclude that the discovery of life does confirm the Multiverse hypothesis.

We’ll now move on to cases where the property discovered is certain to be instantiated, modeled by Certain Small Ball and the left side of the table.

166
2.3. The Doomsday Argument

The Doomsday Argument claims that, from the discovery of your birth rank and the assumption that you are an average observer (in a sense to be explained), the hypothesis that there will be relatively few observers is confirmed (Carter, 1974; Leslie, 1989, 1996). We can generate a simple Doomsday-style argument by imagining that there is either a total of one or a total of two people in the universe. These hypotheses are mutually exclusive and exhaustive.

H1: There is one person in the universe.
H2: There are two people in the universe

Each person created is put in an isolation cubicle, so they do not know if anyone else exists. They are numbered: person 1, and if he or she exists, person 2. Suppose you find yourself existing in this scenario (which you are told about). There are three possible states you might be in.

![Self-Locating Possibility 1](image1)

H1: Person 1
H2: Person 1 Person 2

Figure 4. The Doomsday Argument

(This has the same structure as Certain Small Ball.) Suppose you learn that you are person 1. Does this confirm either H1 or H2? I will argue that it confirms H1, as the Doomsday Argument claims. We must ask the same two questions.

First, by what procedure have I discovered the evidence? Well what exactly is the evidence? We might first try to express the evidence as:

\[E_{-2} = \text{Person 1 exists.} \]

But this misses out the self-locating nature of the evidence:

\[E_{-1} = \text{I am person 1.} \]
Now we need to add the selection effect the self-location brings in. Was there a bias toward discovering I am person 1 rather than person 2? That is, given the existence of person 1, is it certain that I learn that I’m person 1? No; for all I knew, I could have been person 2. Furthermore, I’ve no reason to think I’m person 1 rather than person 2. In the Doomsday Argument literature, this is often expressed as the assumption that we should expect to be average (Dieks, 1992, Eckhardt 1993). Let’s assume for the moment that given H2, you are as likely to be person 1 as person 2. The case can then be modeled by a random procedure (we’ll see in a moment that this assumption can be greatly weakened.)

\[E = \text{I have learned that I am person 1 by a random procedure.} \]

The random procedure puts us in the top row of the table (below).

Second, is the property discovered certain to be instantiated? Yes. The property of being person 1 is certain to be instantiated because person 1 exists given either H1 or H2. This puts us in the left column of Table 2. Obviously H1 entails E; and H2, due to the random procedure, assigns a probability of 1/2 to E:

\[P(E | H2) = \frac{1}{2} < P(E | H1) = 1 \]

We can conclude that the one outcome hypothesis, H1, is confirmed, thus validating the Doomsday Argument.

We can now weaken the assumption that the procedure is random. H1 is confirmed whenever \(P(E | H2) < P(E | H1) = 1 \). This condition holds whenever the probability of being person 1 is less than 1, which holds whenever there is a nonzero probability that you will be person 2. So the only assumption we need for the Doomsday Argument is that there is nonzero probability that you are person 2 (see Bradley and Fitelson, 2003). We’ll now move to a case where the procedure is biased and will find that neither hypothesis is confirmed.

21. One might object that the only way to individuate the observer is as person 1 and argue that this has a chance of 1. But the probabilities are subjective, not objective. Even if you are necessarily person 1, this is not a priori, nor is it certain, so your prior credence will be less than 1. So ‘I’ is not functioning as a rigid designator in the relevant probability model. See n.8.

22. The assumption we make in the next sentence is defended by Elga, 2004.
Four Problems About Self-Locating Belief

2.4. Sleeping Beauty

In the Sleeping Beauty problem (Elga, 2000), the self-locating variable is the time.

It is Sunday night. Sleeping Beauty is about to be drugged and put to sleep. She will be woken briefly on Monday. Then she will be put back to sleep and her memory of being awoken will be erased. She might be awoken on Tuesday. Whether or not she is depends on the result of the toss of a fair coin. If it lands Heads, she will not be woken. If it lands Tails, she will be awoken on Tuesday. The Monday and Tuesday awakenings will be indistinguishable. Sleeping Beauty knows the setup of the experiment and is a paragon of probabilistic rationality.

(This has a similar structure to Certain Small Ball, but notice that Heads and Tails both have the same population here [two]. I’ll explain why this won’t affect our analysis at the end of this section.) When Beauty is woken, is Tails confirmed?

Some say no; her credence in Heads should stay at 1/2. Call these Halfers.

Some say yes; her credence in Heads should fall to 1/3. Call these Thirders.

<table>
<thead>
<tr>
<th>p is certain to be instantiated</th>
<th>p might not be instantiated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random procedure</td>
<td>One outcome confirmed</td>
</tr>
<tr>
<td>Doomsday Argument</td>
<td>No confirmation</td>
</tr>
<tr>
<td>Persistent procedure</td>
<td>No confirmation</td>
</tr>
<tr>
<td>Sleeping Beauty</td>
<td>Fine-Tuning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td>Awake</td>
</tr>
<tr>
<td>Tails</td>
<td>Awake</td>
</tr>
</tbody>
</table>

Figure 5. Sleeping Beauty

169
Some thirders think that Beauty learns new evidence on being woken, and updating on this new evidence confirms Tails (Horgan, 2004, 2007, Weintraub, 2004). But I will argue that this position is mistaken. To determine whether the evidence confirms Tails, we must ask the same two questions.

First, by what procedure has Sleeping Beauty discovered the evidence? Well what exactly is her evidence? We might first try to express the evidence as:

\[E_{-2} = \text{There is a day on which I am woken.} \]

But this misses out the self-locating nature of the evidence:

\[E_{-1} = \text{I am woken today.} \]

Now we need to add the selection effect that the self-location brings in. Was there a bias toward discovering a waking day rather than a sleeping day? That is, given the existence of a day on which I’m awake, is it certain that I observe a day on which I’m awake? Yes. If there is a day on which I’m woken, then I must observe a day on which I’m woken. So the case can be modeled using a procedure that is biased toward waking days.

\[E = \text{I have learned that I am woken today by a procedure biased toward waking days.} \]

The biased procedure puts us in the bottom row.

Second, is the property of being a day Beauty is woken certain to be instantiated? Yes. Given either Heads or Tails, there is a day Beauty is woken. This puts us in the left column. We have a property that was certain to be instantiated being discovered by a biased procedure, so neither Heads nor Tails is confirmed.

\[P(E \mid \text{Heads}) = P(E \mid \text{Tails}) = 1. \]

<table>
<thead>
<tr>
<th>Procedure</th>
<th>p is certain to be instantiated</th>
<th>p might not be instantiated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random procedure</td>
<td>One outcome confirmed</td>
<td>No confirmation</td>
</tr>
<tr>
<td></td>
<td>Doomsday Argument</td>
<td>Quantum mechanics</td>
</tr>
<tr>
<td>Biased procedure</td>
<td>No confirmation</td>
<td>Two outcomes confirmed</td>
</tr>
<tr>
<td>Sleeping Beauty</td>
<td></td>
<td>Fine-Tuning</td>
</tr>
</tbody>
</table>

23. Note that \(P(I \text{have learned that I am woken today } \mid \text{Tails}) = 1 \) just given the setup of the case (see Figure 5). Sleeping Beauty. The biased procedure ensures that \(P(I \text{have learned that I am woken today } \mid \text{Heads}) = 1 \).
This answer supports the Halfer Position. There are many and varied arguments for being a thirder that I am not dealing with of course (see Elga, 2000, Dorr, 2002, Hitchcock, 2004, Draper and Pust, 2008, and Titelbaum, 2008 for a selection). My argument here is that ‘I’m awake’ does not confirm Tails in the straightforward way that Horgan and Weintraub suggest.24

Notice that my analysis of this case differs from the others in that the populations are the same size given either Heads or Tails. This doesn’t affect the analysis because the conclusion is that neither hypothesis is confirmed. (In contrast, if the conclusion were ‘one outcome confirmed’ or ‘two outcomes confirmed’ then this wouldn’t have made any sense.) This conclusion that neither hypothesis is confirmed follows from the facts that the evidence is certain to be instantiated and certain to be found. Such evidence has a probability of 1, so it can’t confirm either hypothesis, no matter how many other objects there may be in the population. This completes my analysis of the four problems about self-locating belief.

Part 3: Alternative Theories

This analysis reveals a core common structure for all four problems. It follows that a theory of self-locating belief based on any one of these problems can and should be applied to the other cases.25 I will now briefly describe three theories regarding self-locating beliefs, each introduced in response to one of the problems, which give problematic results when applied to another.

3.1. The Self-Indication Assumption

In response to the Doomsday Argument, some writers (Kopf, Krtous, and Page 1994; Bartha and Hitchcock, 1999; Olum, 2002) have endorsed the Self-Indication Assumption:

\[(\text{SIA}) \text{ Given the fact that you exist, you should (other things equal) favor hypotheses according to which many observers exist over hypotheses on which few observers exist. (Bostrom, 2002)}\]

24. I leave it open here that ‘I’m awake’ might confirm Tails in some non-straightforward way, though I don’t think it does.

25. Dieks, 2007 and Peter Lewis, 2007, 2010 make similar connections and come to a different conclusion. The following section on the Self-Indication Assumption could be seen as a response.
One motivation for this principle is that it perfectly counterbalances the Doomsday Argument. That is, the shift toward fewer observers generated by the Doomsday Argument is perfectly cancelled out by the confirmation of more observers by SIA.

The problem is that SIA is not just applicable when considering how many observers will exist in the future on this planet. It also seems to apply when considering whether the Everettian Interpretation (QME) or the Stochastic Interpretation (QMS) is correct. There will be many orders of magnitude more observers given QME than QMS. So SIA implies that you should strongly favor QME over QMS, just on the basis of your existence.

Defenders of SIA may try to reply that there is an equivalent of the Doomsday Argument that confirms QMS and is cancelled out by the confirmation of QME. But there isn’t. Indeed, I argued earlier that neither QME nor QMS is confirmed by discovering which branch you are on, so there is no shift to be cancelled out. This contrasts with the Doomsday Argument, where discovering your birth rank confirms that there are fewer observers. We are left with a huge shift in favor of QME based solely on our existence.

3.2. Titelbaum

Mike Titelbaum (2008, forthcoming) develops a theory of confirmation regarding self-locating belief in the context of Sleeping Beauty and runs into similar issues. He argues that the problem for Sleeping Beauty is that she has no nonindexical way to refer to “today.” He proposes fixing the problem by giving the days some uniquely distinguishing feature. He does this by modifying the setup so that on each day Beauty is awake she sees a colored paper. If she is woken on both days, she sees a red paper on one day and a blue paper on the other (there is never a correlation between the day and the color of the paper). If she is woken on only one day, there is a 50 percent chance that she sees a red paper and a 50 percent chance that she sees a blue paper. Beauty, as always, knows all this. Now when she wakes up and sees, say, a red paper, she can update on the nonindexical “a red paper is observed.” As it is certain a red paper will be observed given two wakenings, but there is only a 50 percent of this

27. This is an actualized version of Bostrom’s Presumptuous Philosopher thought experiment (Bostrom, 2002).
given one awakening, the two wakenings hypothesis (Tails) is confirmed. Thus we have an argument for the Thirder position.

But the same strategy applied to QME gives us an implausible result. We already have uniquely identifying descriptions of the branches—one is Up and the other is Down. Applying Titelbaum’s theory, we can update on “an Up branch is observed.” “An Up branch is observed” is certain given QME but is less than certain given QMS, so QME is confirmed by Up. The same applies to Down of course. So QME is confirmed whatever the outcome of the experiment happens to be. Titelbaum is effectively committed to the same bad result as Naïve Confirmation. And we saw earlier that as branching is happening all the time, the Ancients could have worked out that they have overwhelming evidence for QME merely by realizing it was a logical possibility and observing the weather. Although I have focused on Titelbaum, many arguments for being a Thirder in Sleeping Beauty transfer over into Naïve Confirmation in QME (compare Lewis, 2007).

3.3. Meacham

Chris Meacham (2008) argues that acquiring a self-locating belief should never alter credence in a non-self-locating belief (as long as the non-self-locating belief isn’t eliminated).28 He also develops this theory in the context of the Sleeping Beauty problem. He argues that Beauty’s credence in Heads should remain 1/2 when she is awoken and should remain at 1/2 even if she were to learn that it is Monday. Meacham uses the case to defend general norms of belief change for self-locating belief.

But the theory looks problematic when we extend it to the other cases. For example, when we apply these norms to the Doomsday Argument, we get the result that learning that you are person 1 shouldn’t have any impact on the probability of there being one person in total or two people in total. And this looks implausible when applied to such a simple version of the Doomsday Argument.29

28. Meacham (2008) has since modified his position. I’m not sure how these considerations interact with his new position.

29. A referee suggests that this result is not problematic—the Doomsday Argument is after all an argument that most want to reject, and perhaps Meacham has shown us how to reject it. But my intuition, at least, is that Meacham’s suggestion is far less plausible when applied to the Doomsday Argument than when applied to Sleeping Beauty. And I think it is telling that none of the numerous critics of the Doomsday Argument ever suggested
Conclusion

The four problems discussed are all cases where an agent learns, in some sense, where he or she is located. I have argued that there is nothing mysterious about this kind of learning. I have applied the Bayesian view of confirmation, where E confirms H iff $P(E \mid H) > P(E \mid \neg H)$ and defended the resulting positions on each of the four problems—the Doomsday Argument, the Halfer Position in Sleeping Beauty, the Fine-Tuning Argument, and the applicability of confirmation theory to the Everett interpretation of quantum mechanics. The structural similarity between the cases shows that our theories of self-locating belief should be plausible when applied to all four of these cases, and this will hopefully restrict our options in a productive way. More generally, I have tried to show that the self-locating nature of the evidence does not in itself cause any problems for confirmation theory. The challenging feature of these problems, and the source of much of the disagreement about them, is the selection procedure by which the self-locating evidence is discovered.

References

anything resembling Meacham’s approach. This suggests to me that Meacham’s solution is ad hoc and does not extend naturally to related cases.
Four Problems About Self-Locating Belief

Four Problems About Self-Locating Belief

